
Optimal Order Execution with Reinforcement
Learning

Financial Engineering Department

March 2020 - ver. 1.0

1

Optimal Order Execution with Reinforcement Learning

Contents
1 Reinforcement learning for optimal execution 3

2 Experimental setup 3
2.1 Dataset . 3

2.1.1 Volume curve construction and market VWAPs 4
2.2 Methodology . 4
2.3 RL environment . 5
2.4 RL algorithm . 5

2.4.1 Training phase . 5
2.4.2 Test phase . 6

2.5 Surrogate Smart Order . 7
2.6 Parameter setting . 7

3 Results 7

2

Optimal Order Execution with Reinforcement Learning

1 Reinforcement learning for optimal execution
The problem of optimized trade execution in financial context has been extensively studied in
the literature (e.g. [1]-[5], [7], [11]). The goal in this problem is to find the optimal strategy to
execute a big order within a fixed time horizon, trying to minimize transaction costs, risk and
market impact. Many works have addressed this issue using algorithms of machine learning
(e.g. [6], [8], [10]).
In this report we present an analysis based on a reinforcement learning (RL) technique adapted
from [8], with the aim of comparing the performance of our strategy with that of a Surrogate
Smart Order (SSO) policy.

2 Experimental setup
In this section we describe in detail the experiments carried out, with the specification of the
dataset used, the methodology adopted and the algorithm implemented.

2.1 Dataset
The analysis has been performed using two different stocks: NL0010877643 (FCA) and IT0003132476
(ENI). The training set for the RL algorithm is constituted by the 1-second sampled FTSE MIB
limit order book data of 2018, composed of five levels of prices and volumes for each side and
each timestamp, and limited to the continuous trading period only. Figure 1 shows an extract
from the book.

Figure 1: Portion of the FTSE MIB limit order book of 2018.

The test set is made up of the orders released by a “List customer specialist in equity markets”
in 2018, of which we present a sample in Table 1. Each of them has been split into a certain
number of child orders, following the volume curve effectively produced for the corresponding
ISIN between the order start and end times (see Sec. 2.1.1 for the details). As displayed in the
table, the order features are: the client ID, the quantity q to be executed in each interval, the
total size Q1, the start and end times, the ISIN, the date of execution and the verb (‘buy’ or
‘sell’). The orders such that q/Q > 0.5 have been discarded.

1If Q is not a multiple of q, the quantity executed in the last interval is less than q.

3

Optimal Order Execution with Reinforcement Learning

Table 1: Orders dataset example.

2.1.1 Volume curve construction and market VWAPs

The historical daily volume profiles represent how many shares are traded per day. We have
carried out our analysis using the ‘real’ volume curves, realised on a certain day and measurable
only at the end of the day, that is, a posteriori. These have been constructed starting from all
the executions produced on that day for the ISIN in question. We have used these profiles to
split each order at hand into various child orders, through the method explained below.

• We have built the cumulative volume curve produced on the order date for the corre-
sponding ISIN, which represents the cumulated traded quantity from 0, at the beginning
of the day, to 1, at the end of the day.

• We have cut this curve between the start and end times of the order and divided the
ordinate interval of the resulting curve portion into n equal parts, where n is the result
of the integer division between Q and q.

• We have found the corresponding abscissa values, t0, t1,..., tn, which indicate the times
within which each child order must be executed2.

Furthermore, for each order, we have computed the volume-weighted average price of its total
executions between the start and end times as:

VWAPmarket =

∑
t qt · pt∑

t qt
, (1)

where qt and pt are respectively the volume and price of each execution, produced at time t.

2.2 Methodology
Our experimental methodology consists of the following steps.

1. Identification of the observed state variables derived from the order book and the actions
of the training agent.

2. Partition of the training data into episodes and application of the RL algorithm to them,
in order for the agent to learn an optimal execution strategy over the state space.

3. Based on the test set, comparison of the performance of our RL policy with that of the
SSO strategy.

2The times ti are such that in each interval [ti, ti+1] the same quantity is exchanged; hence, the order intervals
are “equal realised volume intervals”.

4

Optimal Order Execution with Reinforcement Learning

2.3 RL environment
The elements composing the environment in which our RL agent moves are listed below.

• States. Each observed state is a discrete representation of the current configuration of
the system. The state variables are: the remaining time t, which represents how much
time is left until the end of the horizon T , the remaining inventory i, which indicates
how much volume is left to execute of the total quantity I, and the spread s, which is
the current bid-ask spread with maximum value S. For each stock analysed, we have
performed a specific binning of the state variables, so as to find a compromise between
including almost the entire ranges of values involved and limiting the computation time.

• Actions. In consequence of observing some state, the training agent chooses an action
following some policy. The action space is constituted by limit order prices, measured
relatively to the current best (ask or bid) price and expressed in tick sizes, at which we
place our remaining shares. For the sell (buy) case, action a means that we are placing
all the unexecuted inventory at price ask − a (bid+ a) through a limit order.

• Rewards. Doing an action in a given state results in an immediate reward for the agent.
We have defined this reward as the implementation shortfall (IS):

IS = ±
∑T

t=0 qt · VWAPt − qex ·M + 0.6 · nexec

Q0 ·M
× 104 , (2)

where qt and VWAPt are respectively the executed volume and the corresponding volume-
weighted average price at time t, qex is the quantity executed due to the action performed,
M is the mid-spread price ((ask + bid)/2) at the beginning of each episode, and Q0 is
the initial volume to be executed. The sign is added to take into account the verb (+ for
buy, − for sell). Furthermore, the term 0.6 · nexec represents the cost deriving from the
total number of executions nexec, being 0.6 euros the fee required by the market for each
execution produced3.

2.4 RL algorithm
The algorithm implemented is based on the following two assumptions:

1. the actions of the RL agent do not affect the behavior of all the other market traders;

2. the optimal action in a state at a given time is independent of the actions in all the
previous states encountered (Markov property [9]).

The first hypothesis ensures that the order book evolves independently of the actions of our
policy, while the second one guarantees that, once we have optimized all the final states (at
t = 0), we can determine the optimal actions for all the immediately preceding states, and so
on until t = T . The learning thus proceeds backwards in time.

2.4.1 Training phase

The training procedure is a sort of Q-learning and is bin-based, so that it can move backwards
in time, relying, in every bin, on the information stored in the subsequent bin. Indeed, we have
partitioned the training data into episodes, and we have divided every episode into a certain

3Every time the book timestamp changes and/or the limit order matches a book level of the opposite side,
one execution is produced.

5

Optimal Order Execution with Reinforcement Learning

number of time bins with variable length (for the details, see Sec. 2.6), with every bin consisting
of intervals of 30 seconds each. At the beginning of each interval, the agent observes the state
and submits a limit order4, going on like this until it executes all the remaining quantity or
reaches the end of the bin. If, after one or more bin “steps”, it gets to the end of the episode
with some unexecuted shares, it then places a market order on the opposite side of the book to
force their execution.
The learning algorithm works as follows, for every t, episode and i:

• randomly select time and inventory within the relative bins, on a grid with a spacing of
30" and 50 shares respectively (in order to cover a wide range of values);

• synchronise the agent at the book timestamp corresponding to the given time and define
the current state s;

• define the admissible actions in the state s;

• try every possible action a in the state s, which results in a reward r(s, a)5 and brings
the system to a new state s′;

• update the expected reward Q(s, a) deriving from taking each action and following the
optimal policy subsequently, through the following rule:

Q(s, a) = Q(s, a) +
1

n(s, a) + 1

[
r(s, a) + min

a
Q(s′, a)−Q(s, a)

]
, (3)

where n(s, a) is the number of times that the agent has already tried action a in the state
s. The Q-values are then written on a Q-table, which results in a (state × action) matrix.

It is worth noting that, apart from the random choice of time/inventory values, the learning
procedure as it is turns out to be fully deterministic.

2.4.2 Test phase

For testing our RL strategy, we have divided the orders dataset into episodes, following the
same method adopted for the training phase. Each episode is constituted by an order interval,
where the quantity q must be executed. For each episode, the test procedure is made up of the
following steps:

• synchronise the agent at the book timestamp corresponding to the start of the interval
and define the current state s;

• define the admissible actions in the state s;

• based on the trained Q-table, select the action a giving the minimum Q-value in the state
s6;

• with the selected action, perform a bin “step”, which results in some executed quantity
and realized countervalue. These values are summed up to give quantity and countervalue
relative to each interval, qint and ctvint.

At the end of this procedure, for each order we have been able to compute the volume-weighted
average price, VWAP =

∑
ctvint/

∑
qint, where the sums are all over the order intervals.

4A limit order is executed if its price meets the opposite side of the book.
5The bin reward r(s, a) is calculated as the sum of all the immediate rewards obtained through each 30"

step.
6If the sum of the matrix elements in correspondence of some state s is 0, the action is chosen randomly

between the admissible ones.

6

Optimal Order Execution with Reinforcement Learning

2.5 Surrogate Smart Order
The strategy with which we have compared our RL policy is a sort of Smart Order, that we
have called Surrogate Smart Order (SSO). The SSO simulation consists in the execution of the
quantity q of the child order at the end of each interval, by submitting a market order. This
strategy differs from what the actual Smart Order policy does, since the latter relies on placing
subsequent limit orders at the current best price within each interval, with the hope that one
or more of them will be “hit” by some market order, and eventually going to the market, at
the end of the interval, with any unexecuted shares. In a similar way to the RL strategy, we
have calculated the volume-weighted average prices deriving from the SSO policy, for each of
the orders in question.

2.6 Parameter setting
The values of the tick size, and consequently of the bid-ask spread, along with the features of
the orders concerned, depend on the particular stock. Therefore, for some parameters involved,
we have adopted specific valorisations for each ISIN, as we show below:

• inventory bins (in shares): [0, 100, 300, 600, 1000, 2000, 5000] (I = 6), for FCA;
[0, 100, 300, 600, 1000, 2000, 8000] (I = 6), for ENI;

• time bins (in minutes): [0, 1, 3, 6, 10, 20, 50] (T = 6), for both;

• spread bins (in tick sizes): [0, 1, 2] (S = 2), in the period 01/01/2018 - 26/01/2018, for
both; [0, 1, 2, 3, 4, 5] (S = 5), in the period 29/01/2018 - 31/12/2018, for both;

• actions (in tick sizes): [-3, -2, -1, 0, 1, 2, 3], for both7;

• tick size: 0.01, in the period 01/01/2018 - 26/01/2018, for both; 0.002, in the period
29/01/2018 - 31/12/2018, for both.

We have performed the training/test separately for sell and buy cases and distinguishing be-
tween the periods with different tick size and spread.

1) For orders between 01/01/2018 and 26/01/2018: training from 01/01/2018 to 26/01/2018
for FCA/ENI; consecutive episodes in a day start every 15 minutes, with each episode
lasting 50 minutes.

2) For orders between 29/01/2018 and 31/12/2018: training from 01/11/2018 to 31/12/2018
for FCA and from 01/07/2018 to 31/08/2018 for ENI8; consecutive episodes in a day start
every 30 minutes, with each episode lasting 50 minutes.

3 Results
In this section we present the outcomes of our analysis. As criterion for comparing the per-
formances of the two implemented strategies, we have chosen the total Profit and Loss (P&L)
deriving from each of them, computed with respect to the market. In order to do this, we have

7The action space has been defined on the base of the price excursions and the spread width in the book.
8Performing the learning from 29/01/2018 to 31/12/2018 would have cost an enormous computation time;

thus, we have restricted our training to a (sufficiently long) period of two months where the price trend is almost
stable, in order not to affect the advantage of a strategy over the other.

7

Optimal Order Execution with Reinforcement Learning

calculated the P&L relative to each order, both in cash (euro) and in basis point units, through
the following formulas:

P&Lstrat [cash] = Q · (VWAPstrat − VWAPmarket) (4)

and

P&Lstrat [bps] =
VWAPstrat − VWAPmarket

VWAPmarket

× 104 , (5)

where Q is the total order volume, while VWAPstrat and VWAPmarket are the volume-weighted
average prices obtained through the strategy (RL or SSO) and the market respectively. Below
we show the tables with the P&L statistics elaborated for FCA (Figures 2 and 3, for SSO and
RL respectively) and ENI (Figures 4 and 5, for SSO and RL respectively).

Figure 2: P&L statistics for NL0010877643: SSO strategy versus market.

Figure 3: P&L statistics for NL0010877643: RL strategy versus market.

Figure 4: P&L statistics for IT0003132476: SSO strategy versus market.

8

Optimal Order Execution with Reinforcement Learning

Figure 5: P&L statistics for IT0003132476: RL strategy versus market.

As we note from the tables above, for every order dataset we have calculated the mean, the
standard deviation, the minimum and maximum values, and the 25th, 50th and 75th percentiles
of the order VWAPs (both in euros – p&l statistics in cash – and in basis points – p&l statistics
in bps). Moreover, count is the total number of orders (both buy and sell) used for the test:
217 for FCA and 342 for ENI. The field p&l total cash in euro, computed as count × mean (in
cash), indicates how much we spend on average using the RL/SSO strategy with respect to the
market, while costs in euro is the cost deriving from the total order executions of the strategy.
By comparing the results obtained for the two policies, we get:

• for FCA: p&l total cash in euro (RL - SSO) = −8697.16 e; costs in euro (RL - SSO)
= 2911.20 e;

• for ENI: p&l total cash in euro (RL - SSO) = −43954.31 e; costs in euro (RL - SSO)
= 5263.20 e.

Thus, by considering the P&L only, with our RL strategy we earn about 12% and 28% more
with respect to the SSO policy, for FCA and ENI respectively, while the cost coming from the
order executions is always higher for the RL policy compared to the simulated smart order.
In conclusion, the overall gain of the RL over the SSO strategy is of about 7% and 23%,
respectively for FCA and ENI.
Though further analyses would be required to confirm these results, this first analysis shows
that a reinforcement learning approach is capable of performing significantly better than a naive
strategy like the Surrogate Smart Order.

References
[1] Almgren, R. and Chriss, N., “Optimal Execution of Portfolio Transactions”. In Journal of

Risk, 3, 5-39 (2000).

[2] Bertsimas, D. and Lo, A., “Optimal Control of Execution Costs”. In Journal of Financial
Markets, 1, 1-50 (1998).

[3] Cartea, Á. and Jaimungal, S., “Optimal execution with limit and market orders”. In Quan-
titative Finance, 15, 12791291 (2015).

[4] Cheng, X., Di Giacinto, M., and Wang, T.-H., “Optimal Execution with Dynamic Risk
Adjustment”. Preprint. arXiv: 1901.00617v3 (2019).

[5] Gatheral, J. and Schied, A., “Optimal trade execution under geometric Brownian motion
in the Almgren and Chriss framework”. In International Journal of Theoretical and Applied
Finance, 14, 225236 (2011).

9

Optimal Order Execution with Reinforcement Learning

[6] Hendricks, D. and Wilcox, D., “A reinforcement learning extension to the Almgren-Chriss
framework for optimal trade execution”. In Computational Intelligence for Financial Engi-
neering & Economics, IEEE Conference, 457464 (2014).

[7] Obizhaeva, A. and Wang, J., “Optimal trading strategy and supply/demand dynamics”.
NBER Working Papers, No 11444, 2005.

[8] Nevmyvaka, Y., Feng, Y., and Kearns, M., “Reinforcement Learning for Optimized Trade
Execution”. In Proceedings of the 23rd International Conference on Machine Learning, 673-
680. ACM. (2006).

[9] Puterman, M., “Markov Decision Processes”, John Wiley and Sons, New York (1994).

[10] Ritter, G., “Machine Learning for Trading”. In Risk, 30.10, 8489 (2017).

[11] Alexander Weiss, A., “Executing large orders in a microscopic market model”. Preprint.
arXiv:0904.4131 (2009).

10

